

One of the most important environmental protection projects of our time.

Clear responsibility and sound financing

Our task

Our task

Regardless of the future of nuclear power, nuclear waste already exists from the Swedish nuclear power plants.

This waste must be taken care of to protect people and the environment.

This task is so extensive that we regard it as one of Sweden's most important environmental protection projects.

About SKB

Clear roles and legislation

The Government

Swedish Radiation Safety Authority

Nuclear Waste Council

Land and Environment Court

Municipalities

Financing Act Nuclear Activities Act Environmental Code Radiation Protection Act Planning and Building Act

How waste is handled

The Swedish system

How waste is handled

m/s Sigrid

Extension SFR

- Increased storage capacity
- Decommissioning waste from Sweden's nuclear facilities
- Interim storage facility, long-life waste (core components)
- Application 2014

111000

1 fac

Clab - Central Interim Storage Facility for Spent Nuclear Fuel

-

J papa papa pitit

ISK KÄRNBRÄNSLEHANTERING

Clab today

In operation since 1985 Interim storage for all spent nuclear fuel in Sweden

~200 tonnes received annually, 70 transport casks

In storage 6 300 tonnes uranium

Permit to store 8000 tonnes

Ten storage pools (> 30 000 m³ desalinated water) situated about 40 meters below ground

Challenge

Clab will reach 8000 tonnes of used fuel about 2022 in 2015 we applied for a new permit of 11.000 tonnes

Solution

Two steps:

2016-05-10

- Move fuel assemblies from normal canister to compact canister
- Relocate reactor components and control rods.

What's a compact canister

Normal canister

Compact canister

Fuel	Normal canister	Compact canister
BWR	16	25
PWR	5	9

How waste is handled

Encapsulation plant

Clink

- 1 Handling Pool
- 2 Handling Cell
- 3 Inerting
- 4 Welding
- 5 Non Destructive Testing
- 6 Machining

The Spent Fuel Repository at Forsmark

SKB's method

What has SKB applied for?

- To construct and operate a facility (Clink) for storage of spent nuclear fuel and core components
- and for encapsulation of spent nuclear fuel
- To construct and operate a facility (The Spent Fuel Repository) for final disposal of spent nuclear fuel and nuclear waste
- Final disposal in accordance with the KBS method with vertical deposition of the canisters (KBS-3V)

The Licensing Process

Our task

Finding a site

SVENSK KÄRNBRÄNSLEHANTERING

Äspö Hard Rock Laboratory

Canister Laboratory

International research collaboration

Dialogue and openness

Dialogue and openness

What degree of confidence do you have in the company Svensk Kärnbränslehantering AB, SKB?

BASE: All (n = 800), year 2015

Thank you for your attention!

Now it's time for facility visits

