

### The "icon" of nuclear power in Sweden





### The beginning and the end



First connection to the grid: May 15, 1975 / March 21, 1977

| Contractor:         | ASEA Atom (Westinghouse Electric Sweden) |
|---------------------|------------------------------------------|
| Production, unit 1: | Total 93,4 TWh net (1999)                |
| Production, unit 2: | Total 108 TWh net (2005)                 |
| Status, unit 1:     | permanently shutdown since 30 Nov 1999   |
| Status, unit 2:     | permanently shutdown since 31 May 2005   |





#### **Barsebäck Conditions**

- Swedish management system for operational waste can be used for dismantling waste.
- Repository ready 2028
- Fuel and control-rods are transported to the interim storage
- Clean plant, few fuel leakages
- Time to make studies in the planning process
- Dismantling of unit 1 and 2 will be carried out as a joint project
- Good dialogue with the authorities
- Co-operation in national and international forums to get experience and knowledge
- Compensation for Service operation and Available funds



### Planning highlights:



The Licence cover all steps The Safety Analyse Report have to be developed for each step



Anna Sällberg, Environmental Engineer Maria Taranger, Communication Officer

#### Studies conducted for the decommissioning

- Cost estimate for the decommissioning
- Dismantling and removal of the entire reactor vessel
- Segmentation of the reactor pressure vessel and internal parts
- Radioactive inventory of Barsebäck 1 and 2
- Mapping of radioactive contamination Part 1
- Disposal of large turbine components
- Demolition of the reactor building
- Demolition of the turbine building and other buildings
- 3D model comprising land and buildings
- Dismantling and waste logistics



#### Lessons learned and strategy

- Appropriate requirements and regulations
- Available funds and estimated costs
- Available spent fuel storage
- Available radioactive waste storage
- Perform a site characterization of high quality
- Maintain the "Safety-first" culture and focus on risk management.
- Dismantle in big pieces and use proven methods
- Carry out the dismantling on an industrial scale with logistic for "rip and ship"
- Keep control of the project within your own organization
- Involve stakeholders



#### **Right now**



- Building interim storage, ready in June -16
- Segmentation of the internal reactor parts starts in the summer of 2016
- Segmentation finished 2019
- Waste management handling operational waste
- New security equipment installed
- Removal of fuel racks
- Exciting to do something for real!



Thank you for your attention!

102

## Ongoing and *planned tasks*

- Determination of requirements for demolition and clearance
- Control program for the release
- Service systems during the dismantling and demolition
- Decontamination of pipes and tanks of the waste facility
- Mapping of radioactive contamination Part 2
- Starting up the application for regulatory permits

## Projects

- Removal of fuel
- Adapting the plant to the service operation
- Full system decontamination
- Removal of control rods and probes
- Removal of the fuel racks
- Processing of waste from operation
- Segmentation and storage of the RPV internals, project HINT

# **Procedure for Free Released Site**

| List of existing<br>radioactive nuclides.<br>What, where and how<br>many?                                                                                                              | List of radioactive<br>nuclides that exceed<br>the limit<br>chosen for future<br>scenario.<br>What, where and how<br>many?                                                                                                                           | Dismantling and<br>transport of                                                                    | Final survey report<br>Approval from the authority<br>Radiological criterion<br>fulfilled                                                         |                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Characterization<br>Mapping<br>contamination;<br>buildings, materials,<br>soil, groundwater.<br>History of the leakage<br>Determine the natural<br>presence of<br>radioactive nuclides | Radiological criteria<br>Dose to critical group<br>Limit list concentration of<br>radioactive nuclides.<br>Calculation of dose<br>to the critical group.<br>Methodology / Standard<br>accepted by the authority,<br>municipality,<br>local residents | Demolition<br>Landscaping<br>Complementary and<br>additional mapping<br>of radioactive<br>nuclides | Measurements for free<br>release. List of remaining<br>radioactive nuclides in<br>soil, groundwater.<br>Calculation of dose to<br>critical group. | Free<br>Released site |